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Abstract: Optical scatterometry extracts structural and material properties of nanostructures
from optical signal by solving the optical inverse problems (OIPs). It typically requires prior
information for the establishment of structural models. Existing modeling methods are almost
based on strict model constraints, which may oversimplify structural details. Here, we propose a
strategy with relaxed model constraints. To deal with the expanded solution space caused by
the relaxed constraints, the inverse design inspired optimization for optical scatterometry(IDO-
OS) is developed by integrating automatic differentiation. We evaluated our method under
both numerical simulation and experimental conditions. The results of numerical simulation
demonstrate the performance of our method with an optimized spectral goodness-of-fit of 0.99
and a high degree of consistency with target structures. In the experiment, we integrate IDO-OS
with hybrid metrology and thin plate splines algorithm to generate relaxed model constraints, and
the reconstructed structures show excellent agreement with the measurements of transmission
electron microscopy. This work establishes what we believe to be a new strategy for solving
inverse problems in optical scatterometry, offering enhanced structural reconstruction capabilities
while maintaining computational efficiency.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical metrology [1–4] studies the interaction between light and the object under test to
make measurements. It plays a crucial role across diverse fields due to its non-contact nature
and high-speed capabilities. Optical scatterometry [5–8], also called optical critical dimension
metrology, is a widely used optical metrology method for morphology reconstruction and material
characterization of periodic micro and nano- structures. It includes two fundamental components:
experimental measurement and optical inverse problems(OIPs) [9–12]. The experimental
measurement involves the acquisition of optical signal using specialized instrumentation, and the
OIPs focus on extracting structural and material properties from the measured signal. Solving
OIPs is an important and difficult part in optical scatterometry, which is typically achieved
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through a combination of simulations and algorithms [13–16]. For simulation, the model of the
sample to be tested is constructed with numerical methods to calculate the corresponding optical
signal; for algorithms, different strategies are employed to adjust model parameters to find the
best model whose simulated optical signal matches the target signal.

When solving OIPs, it is usually necessary to combine prior information to establish the
structure model to reduce the complexity [17–20]. For existing methods, strict model constraints
are used when constructing models. So, the solution space is defined by the parameters of
the specified models. For example, a trapezoidal model (Fig. 1(a)) typically involves five
parameters, resulting in its solution space consisting of the same dimension. These strict model
constraints simplify the number of parameters and improve computational efficiency, but lead to
structures that are highly dependent on particular model constraints. Practical structures actually
have more detailed shape features, requiring relaxed model constraints with more structural
parameters. Since the relaxation of model constraints, the solution space will be significantly
expanded and contain structures with different geometric profiles, as shown in Fig. 1(b). However,
existing optimization methods have difficulty dealing with such an expanded solution space
due to substantial computational resources. To introduce relaxed model constraints in optical
scatterometry, new optimization methods are on demand.

Fig. 1. Schematic diagram of the solution space of traditional methods and our method
with relaxed model constraints. (a) When solving OIPs from the measured optical signal,
traditional methods construct model with strict model constraints. For the trapezoidal model,
the solution space can be a 5-dimesions space containing parameter w, p, h, θ and r. (b)
The solution space of relaxed model constraints will be significantly expanded and contain
structures with different geometric profiles.

In recent years, optical inverse design is developing rapidly in solving OIPs and many
optimization methods have been developed [21,22]. In optical inverse design, the optimization of
a large number of parameters has been extensively studied. Among these studies, the adjoint
method [23] is proposed so that only two simulations are needed to obtain gradients of all
parameters, which eventually makes gradient-based optimization of a large number of parameters
practical. Additionally, the advent of automatic differentiation [24,25] has provided a new method
for obtaining parameter gradients. These methods make it possible to optimize a large number of
parameters with reasonable computing resources, but they are closely integrated with the optical
inverse design itself and are usually used in topology optimization [26]. In optical scatterometry,
it is only necessary to adjust the shape of the model. Therefore, directly applying methods from
optical inverse design to optical scatterometry is not suitable.

To combine the advantages of these optimization methods into the applications of optical
scatterometry, we develop an OIPs’ solving approach by integrating automatic differentiation,
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termed inverse design inspired optimization for optical scatterometry (IDO-OS). IDO-OS can
compute gradients for all structural parameters after a single forward simulation and has a
high degree of compatibility with optical scatterometry scenes. The principle of IDO-OS and
the workflow of optical scatterometry with relaxed model constraints are introduced in the
Methods section. In the Results and discussion section, we evaluate IDO-OS’s performance
in solving OIPs under the numerical simulation condition. The optimized spectrum achieves
a goodness-of-fit (GOF) of 0.99, and the results are highly consistent with the target structure.
In the experiment, we combine thin plate splines algorithm (TPS) [27] and hybrid metrology
[28] to provide prior information for some inclined silicon-on-insulator (SOI) gratings. Then
we transform the prior structural information into relaxed model constraints and solve the OIPs.
The GOF of the spectrum reaches 0.98, and the reconstructed structures agree well with the
transmission electron microscopy (TEM) measurements.

2. Methods

The fundamental principles of IDO-OS are shown in Fig. 2(a), comprising two essential
components: forward and backward processes. The forward process employs rigorous coupled
wave analysis (RCWA) [29] to calculate the optical signal from nanostructures. The RCWA
simulation is a method for solving Maxwell’s equations based on plane-wave expansion. It
involves dividing the structure into differential layers, solving eigenvalue equations in each
differential layer on the plane-wave basis, and constructing the transmission matrix between
layers according to the boundary conditions. As expressed in Eq. (1) and Eq. (2):
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the electric field of a specific plane wave in layer i can be represented as a superposition
of forward and backward propagating components, with coefficients denoted as ai and bi,
respectively.The propagation of an electromagnetic wave within the layer i introduces a phase
shift ϕi, represented by a diagonal matrix containing phase propagation factors. At the interface
between adjacent layers (i-1 and i), propagation of electromagnetic wave must satisfy boundary
conditions, represented by transfer matrix Ti. So based on these equations, the electromagnetic
field distribution in different differential layers can be calculated. The backward process is
described by Eq. (3) and Eq. (4):
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It involves obtaining all differential layer gradient matrices by automatic differentiation [23,24],
r denotes the corresponding optical signal. Automatic differentiation is a technique widely used in
machine learning to implement backpropagation in a neural network without a manually-computed
derivative. The core idea behind automatic differentiation is to efficiently compute gradients by
applying the chain rule to the computational graph of the function. The analytical construction
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of the forward process by RCWA enables gradient computation for structural parameters through
the chain rule, and by employing automatic differentiation, we can acquire the gradients for all
parameters through a single forward simulation.

Based on IDO-OS, we introduce relaxed model constraints into optical scatterometry. Fig. 2(b)
shows the comparative workflows between traditional approaches and this work, and the differences
are highlighted with different colors. In this work, we allow the parameters of each differential
layer to be optimized. The solution space includes the combined thickness, width, and center
position of each differential layer. As long as the number of differential layers is sufficient, the
parameters of all differential layers can be used to describe any shape. Then, optimizing the
parameters of these differential layers under the prior imformation, we can obtain an optimization
with higher degrees of freedom and more structural details than the specific geometric model
constraints, namely relaxed model constraints.

Fig. 2. The principle of IDO-OS and the workflow of optical scatterometry with relaxed
model constraints. (a) Schematic diagram of IDO-OS. The upper section illustrates the
forward modeling. The structure in a unit cell is described by rectangular differential
layers with thickness h, width w, and center (x, z). The lower section shows the forward
and backward processes of IDO-OS. Here, ai, bi and ci, di are the forward and backward
propagation coefficients of the electric field at the upper and lower interface in layer i,
respectively. Ti represents the transfer matrix between layer i-1 and layer i. Pi denotes the
propagation matrix in layer i. r denotes the corresponding optical signal. (b) The workflow
of optical scatterometry with strict model constraints and relaxed model constraints.

Figure 3 illustrates the time required for obtaining all gradients once under relaxed model
constraints by the traditional method and IDO-OS. Here, we only calculate one spectral point in
the RCWA. The computations are performed on a 12th Gen Intel Core i7-12700F processor with
16 GB memory. Traditional optimization methods, relying on numerical differentiation, require
multiple forward processes (indicated by the blue arrow in Fig. 2(a)) to compute gradients of all
parameters. The computational time for these methods can be simply expressed as n ∗ ft, where n
denotes the parameter count and ft represents the forward process time. IDO-OS, intergrating
automatic differentiation, executes a single forward process followed by gradient computation in
the backward process. Its computational time is simply expressed as ft+n∗bt, where bt represents
the backward process time. Under relaxed model constraints, which typically involve numerous
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differential layers, the forward process time substantially exceeds the backward process time.
This fundamental difference explains the significant computational advantage of IDO-OS over
traditional methods. The memory overhead introduced by automatic differentiation is negligible,
consuming merely 0.3% of total memory resources.

Fig. 3. Time required for obtaining all gradients once under relaxed model constraints of one
spectral point by the traditional method and IDO-OS. The thick dots represent the sampling
points. The graph in the upper left corner shows details within the vertical coordinate range
of 0 to 1 s and the horizontal coordinate range of 0 to 20.

3. Results and discussion

3.1. Numerical simulation condition

We first evaluate the performance of the IDO-OS optimization method under the numerical
simulation condition. We use the simulated constructed sample as the target sample and optimize
with relaxed model constraints to verify the performance. We set the one-dimensional SOI
grating as the target structure. We also set the structure as a slanted grating and add radian at the
top to increase structure complexity, as shown in the first picture in Fig. 4(a). The material of the
substrate and the top layer are set as monocrystalline silicon and amorphous silicon, respectively,
and the middle layer material is set as silicon dioxide.

Fig. 4. Results in numerical simulation condition. (a) Schematic of the structures in a unit
cell. (b) Comparison between the result structure and the target structure. (c) Specular
reflectance spectra of the initial structure, the result structure and the target structure at
incident angles of 10◦, 30◦ and 50◦.

When establishing models with the prior information, we transform the prior information into
relaxed model constraints. The target structure is divided into many differential layers, and the
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positions of the differential layers are used to describe the shape. During optimization, we keep
the difference between the position of the layers in the model structure and the target structure
below a set threshold as constraints. In the traditional method, the upper curve is often described
by a circular arc or a Bessel curve. For the circular arc, it simplifies the details of the curve;
for the Bezier curve, the number of parameters will become large when choosing a high-order
Bezier curve or involving many curves in structure, and it cannot be ensured that the optimized
structure retains the features of the prior information. In contrast, we combine relaxed model
constraints to ensure that the optimized structure can retain more information about the prior
structure information.

The setup is as follows: we establish the model with 70 differential layers. The number of
layers represents a hyperparameter in RCWA modeling, which can be selected based on spectral
convergence. The material of the substrate is set as monocrystalline silicon. The material of the
top 20 layers and the last 50 layers is set as amorphous silicon and silicon dioxide, respectively.
For the top 30 layers, we set the difference threshold of the relative positions of the model
structure and the target structure to 1 nm. We choose such a threshold to correspond to the
experimental condition in Section 3.2, which explained in detail in Section 3.2. For the latter 40
layers, the positions of both sides of the differential layer are fitted linearly after each optimization
and ensure the edge of the differential layer falling on the fitted line. The linear fitting constraint
is specifically motivated by the characteristics of the target area, which exhibits a flat profile
without obvious detailed structure in the prior information. The initial structure of the model is
shown in the second picture in Fig. 4(a). The period and material of the model are set as the
same as the target model. The optimization uses the Adam optimizer [30] with a learning rate of
1e-5. We choose mean squared error as the loss function.

χ2 =

N∑︂
k=1
ωk[ek − sk(x)]2 (5)

In Eq.(5), ω denotes the weight coefficient, e denotes the experimental signal, s denotes
the simulation signal and k denotes the sampling number. ωk is defined by the equation
ωk = 1/σ2(ek), where σ indicates the standard deviation of experimental signal [18]. In the
numerical simulation condition, since the target spectrum is simulated and there are no errors,
we set ωk to the constant value of 1. The target signal is set as s-polarized specular reflectance
spectra across a 200-1000 nm wavelength range at incident angles of 10◦, 30◦ and 50◦.

The optimized structure is shown in the third picture in Fig. 4(a), and the result is highly
consistent with the target structure as shown in Fig. 4(b) (for clarity, the number of the points in
Fig. 4(b) is less than the number of differential layers). Fig. 4(c) shows the simulated spectra of the
initial structure, the result structure, and the target structure. The initial spectrum exhibited a GOF
score of 0.90, and the optimized spectrum achieved a GOF score of 0.99. So in the numerical
simulation condition, our method shows excellent performance. The optimized structure and the
target structure are almost identical by using relaxed model constraints.

3.2. Experiment condition

In the experiment, the prior structure information usually comes from two sources, one from
the pre-set structure in the process, and the other from the results of other metrology tools. The
pre-set structure is not always consistent with the practical structure, so we obtain prior structure
information from other metrology tools, which can also be called hybrid metrology [28]. By
definition, hybrid metrology involves the combination of two or more metrology tools to analyze
the same sample. It emerges as a powerful strategy to overcome the inherent limitations of
individual measurement techniques. We combined hybrid metrology to provide relaxed model
constraints. It is worth mentioning that hybrid metrology not only provides initial structural
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information but also acts as a regularization mechanism, effectively preventing convergence to
physically unrealistic local extrema. The sample is first measured by TEM. The edge detection
algorithm [31] is then applied to the TEM image to extract the shape. However, if every sample
is measured with TEM, the cost and time will increase a lot. Considering that a batch of samples
is often processed using the same manufacturing process at the same time, these samples are
often very similar in the treatment of the manufacturing process. So, we propose a strategy to
obtain prior structure information on the same class of samples from the same manufacturing
process. We perform TEM on only one sample and use TPS [26] to estimate the structure of
other samples without TEM. Fig. 5 shows a schematic of this strategy. The core idea of this
method is to describe the manufacturing process as the mapping of the nominal structure and
TEM structure of one sample and then applying the mapping to other samples. Firstly, the edge
detection algorithm is used to obtain the shape of the sample measured by TEM. Secondly,
the extracted shape is processed into a model structure suitable for RCWA modeling. Thirdly,
mapping the relationship from the nominal structure to the TEM structure with TPS. Finally,
the estimated TEM structures of the others can be calculated using the mapping relationship
and other nominal structures. We emphasize that the TEM test is not necessary. Alternative
metrology techniques, such as scanning electron microscopy or atomic force microscopy, can
equally serve as sources of prior information.

Fig. 5. Schematic diagram of Edge extraction and TPS algorithm for providing prior
information of the batch of samples.

We process two inclined SOI gratings. The material of the substrate and the top layer are set
as monocrystalline silicon and amorphous silicon, respectively, and the middle layer material is
set as silicon dioxide. The nominal period is 400 and 450 nm. Since the period can be clearly
described by the diffraction equation, it is obtained by solving the diffraction equation.

sin θi + sin θm = m
λ

Λ
(6)

In Eq.(6), i denotes the incident light, m denotes the diffraction order, λ denotes the wavelength
of the light andΛ denotes the period of the sample. We choose angular-resolution spectroscopy to
measure optical signal. The experimental setup is shown in Fig. 6. The experimental procedure
consists of two steps. The first step is to measure the unpatterned area of the sample to obtain the
material information and the second step is to measure the structure region of the sample. For
the first step, we measure the specular reflectance spectra polarized with s at incident angles of
10◦, 30◦ and 50◦. We then construct a thin film model and use the Cauchy equations and the
Tauc-Lorentz dispersion equation [32] for the silicon dioxide layer and the amorphous silicon
layer, respectively. We choose the Levenberg-Marquardt algorithm [33] to optimize material
parameters. In the second step, we perform measurements on the structure region with the same
optical configuration. The prior structure information is obtained by TEM on the sample whose
nominal period is 400 nm. We establish the model with 100 differential layers. The material
of the substrate is set as monocrystalline silicon. The material of the top 12 layers and the last
88 layers is set as amorphous silicon and silicon dioxide, respectively. We used the predicted
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structure obtained by the TPS algorithm shown in Fig. 5 to perform differential layer initialization.
The process begins by assigning uniform thickness values to all differential layers. Subsequently,
we derive vertex coordinates for each differential layer through interpolation of the prior contours
at different thickness positions. The width and center point of each differential layer are then
calculated based on these vertex coordinates. Considering that there is a small stepped structure
on the left contour of the TEM, we apply threshold constraints in the top and step areas, and linear
fitting in other areas. The prior information is transformed into relaxed model constraints, and
the difference threshold is set to 1 nm. We choose such a threshold to combine the advantages
of the two metrology tools in hybrid metrology. The area with threshold constraints has rich
and detailed features. Given that the wavelength of light used in optical scatterometry typically
greatly exceeds the electron wavelength, TEM demonstrates superior capability in detecting these
features compared to optical scatterometry. The threshold constraint thus serves to appropriately
limit the scope of optical scatterometry. As a hyperparameter, the threshold value influences the
model’s regularization intensity, with lower thresholds corresponding to stronger regularization
effects. Then, as we did in the numerical simulation condition, the optimization used the Adam
optimizer with a learning rate of 1e-5. We choose mean squared error as the loss function and the
target signal is set as s-polarized specular reflectance spectra across a 200-1000 nm wavelength
range at incident angles of 10◦, 30◦ and 50◦.

Fig. 6. Schematic view of the experimental setup consisting of lens (L), polarizers(P), light
source (LS) and spectrometer.

According to the diffraction equation, the periods of the two samples are 400.01 nm and
449.05 nm, respectively. Fig. 7(a) shows the optimized structures. We also test another sample
by TEM and compare the TEM structure with the measured structure. It can be found that the
measured results agree well with the TEM structures. Fig. 7(b) shows the optimized spectra
of the two samples. The GOF of the optimized spectral of the two samples reaches 0.980
and 0.977, indicating that the spectra of the optimized structures are highly consistent with
the experimental spectra. To quantitatively validate our method’s accuracy, we performed a
comparative analysis between TEM and IDO-OS measurements for Sam2. The critical dimension
parameters illustrated in Fig. 8 are extracted by repeated sampling and statistical averaging. As
shown in Table 1, the largest absolute deviation is 2.9 nm, indicating high accuracy of our method.

Table 1. Measured parameters of TEM and IDO-OS for Sam2, and the absolute
deviation

Parameters TEM IDO-OS Absolute deviation

h1 (nm) 22.6 21.4 1.2

h2 (nm) 186.9 188.8 1.9

w (nm) 251.2 248.3 2.9

a1 (◦) 58.7 59.2 0.5

a2 (◦) 115.7 115.9 0.2
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4. Conclusion

In summary, we propose a method with relaxed model constraints in optical scatterometry.
Compared with traditional methods, which are based on strict geometric model constraints,
our method has higher degrees of freedom and can reflect more structural details. Tests in
both numerical simulation and experimental conditions show that our method has excellent
performance. Our method provides a new strategy for solving inverse problems in optical
scatterometry and we also propose a strategy for achieving accurate, low-cost measurements for
batch samples in manufacturing processing.

Fig. 7. Results in experimental condition. (a) Comparison between IDO-OS results and
TEM results in a unit cell. (b) Simulated specular reflectance spectra and the experimental
spectra of sam1, sam2 at incident angles of 10◦, 30◦ and 50◦.

Fig. 8. The critical dimension parameters we extracted in TEM result.
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